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Abstract

A detailed study is made of the effects of variations in
lamination and material parameters of thin-walled composite
frames on their vibrational characteristics.  The structures
considered are semicircular thin-walled frames with 1 and J
sections. The flanges and webs of 1he frames are modeled by
using two-dimensional shell and plate finite elements. A mixed
formulation is used with the fundamental unknowns consisting
of both the generalized displacements and stress resultants in
the frame.  The frequencies and muodes predicted by the (wo-
dimensional finite element model are compared with those
obtained (rom experiments, as well as with the predictions of a
one-dimensional thin-walled beam finite element model. A
detailed study is made of the sensitivity of the vibrational
response to variations in the fiber orientation, material proper-
ties of the individual layers, and boundary conditions.

Introduction

‘The physical understanding and the numerical simulation
of the dynamic response of laminated anisotropic structures
have recently become the focus of intense efforts because of
the expanded use of fibrous composites in aerospace, automo-
tive, shipbuilding, and other industries. and the need 10 estih-
lish the practical limits of the dynamic load-carrying capability
of structures minde from these materials. References 1-45 are
indicative of the general interest and efforts focused on various
aspects of the vibration of structures.  Experimemal studies
have been performed on the free vibration and impact-response
of thin-walled composite frames and  stiffeners.'  One-
dimensional theories have been developed for the static,

vibrition  and  buckling  analyses  of thin-walled  frame

structures.” * However, no systematic assessment has been
made of the range of validity of the basic assumptions of these
theories.  Approximate analytical and numerical techniques
have been applied to the study of the vibrational response of
stiffeners.” ' Only a  few

isotropic and  composite

. . 1 . P . « .
puhhculmns22 2 examine the effects of variations in lamination
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and geometric parameters of composite panels on their vibra-
tional characteristics, and these publications do not consider
thin-walled composite frames.

The present study summarizes the results of a recent
study (Noor, Carden, Peters)?* on the effects of variations in
the lamination and geometric parameters of thin-wailed com-
posite frames on their vibrational characteristics (frequencies,
and energy components associated with different modes). The
frames considered are semicircular, made of thin-walled
graphite-epoxy material with 1 and J sections and have a
36-inch radius (see Fig. 1),

Analysis

Computational Models

Twao computational models are used for the thin-walled
composite frames study. In the first model, the flanges and
weh are modeled using two-dimensional shell and plate finite
elements. The second model is a finite element discretization
of the one-dimensional Viasov's type thin-walled beam theory.
Hencetorth, the two models will be referred to as two-
dimensional (2D) and one-dimensional (1D) finite element
models, respectively.

Mathematical Formulation

1) Two-dimensional models. The analyiical formulation
for the two-dimensional models is based on the Sanders-
Budiansky shell theory with the effects of transverse shear
deformation. and  laminated anisotropic  material response
included. A mixed formulation is used with the fundamental
unknowns consisting of both the generalized displacements and
the stress resultants in the frame (see Fig. 2 for the sign
convention),

Ricubic shape functions are used to approximate each of
the generalized displacements and the stress resultants, The
number of displacement nodes in each element is 16. The
stress resultants are allowed to be discontinuous at interelement
boundaries. The total number of stress-resultant parameters in
each element is 12R. The element characteristic arrays are
obtained by using the two-field Hellinger-Reissner mixed
variational principle.



i One-dimensional models. The analytical formulation
for one-dimensional models is based on a form of Viasov's
thin-walled beam theory with the effects of flexural-torsional
coupling, transverse shear deformation, and rotary inertia
included. The fundamentitl unknowns consist of seven internal
forces and seven generalized displacements of the beam (see
Fig. 3 for the sign convention).  The element characteristic
arrays are obtained by using a modified form of the Hellinger-
Reissner mixed variational principle.  The maodification con-
sists of augmenting the functional of that principle by two
terms: 1) the Lagrange multiplier associated with the con-
straint condition relating the rotation of the cross section and
the twist degrees of freedom: and 2) a regularization term that
is quadratic in the Lagrange multiplier. Only C” continuity is
required for the generalized displacements.  Lagrangian inter-
polation functions are wsed for approximating each of the
generalized  displacements, internal  forces  and  Lagrange
multiplier.  The polynomial functions for the internad forces
and the Lagrange muliiplier are one degree lower than those of
the generalized displacements.  In the present study quadratic
polynomials are used in approximating the generalized dis-
placements.  Linear polynomials are used in approximating
cach of the internal forces and the Lagrange multiplier. The
infernal forees and the Lagrange multiplier are allowed 10 be
discontinuous at interelement boundaries. For each element the
total number of generalized displacement parameters is 21, the
total number of internal force parameters is 14 and the wial
ammber of Lagrange multiplier parameters is 2. Noor, Peters
and Min™* present the fundamental equations of the thin-walled
beam theory.

For guasi-isotropic  laminated  composites, numerical
experiments (o be described subsequently have demonstrated
that reasonably accurite results can be obtained using the
one-dimensional model when the Taminated composite s
replaced by an equivalent isotropic material with the following
Young's and shear moduli:

= A, /h (n
Ah (2)

where Ay and Ay are the extensional stiffness in the x direc-
tion. and the in-plane shear stiffness used in the classical
lnmination theory, respectively: and b is the total wall thickness
(of the flange or web). This approximation was adopted in the
present study.

Finite Element Equations

The finite element equations for each individual element
ol the 1D and 2D models can be cast in the following compact
Form:

(||+<1 --(.,2|§A|){z; =0 (3)

where |7} is the vector of the element degrees of freedom; o is

* *
the frequency of vibration: (K| and [M] are the generalized
stitfoess and mass matrices.  The explicit forms of matrix

* *
arrays associated with |7, [K| and [M] are given in Noor and

27 . .
Anderson®™, and Noor and Peters?’ for the two-dimensional

25 : :
models, and Noor, et al~" for the one-dimensional model.

Vibrational Sensitivity (o0 Variations in Lamination and Mate-
rial Parameters

The expressions for the sensitivity derivatives of the
frequency and response vector with respect to the lamination
and mnterial parameters, ;. of the composite frames are given

hy:”
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where {Z} represents a particular solution of the equations:
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and ¢, are multipliers given by:
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In Egs. 4 10 7. the eigenvectors are assumed to be nor-

*
malized with respect to [M{. i.c.

*
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The expressions for the total complementary strain
energy of the frame. U, and its derivatives with respect to A;.
are given by:
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For the purpose of obtaining analytic derivatives with respect
to some of the lamination parameters, such as the fiber orienta-

. . - . J|r
tion angle of different layers. it is convenient to express L
I
0}
terms of a—gxll- as follows:
| J|F|!
=i 25 e (an
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The matrix -L')-Xt_—— is evaluated using the analytical derivatives

of the material stiffness matrix of each laminate (flanges and



wehy. The material stiffness matrix of the laminate is given in
Jones.”

Experimental and Numerical Studies

Apparatus and Test Procedure

a. Specimens. Two specimens, shown in Fig. 4, were
tested. an I-section and a J-section frame. Nominal dimensions
of each cross section are shown in Fig. 1. Weight of the frame
sections was 3181 and 4.085 Ib. (1.443 and 1.853 kg) for the 1
and J frames, respectively. The frame sections were made from
AS4/S208 graphite/fepoxy unidirectional tape layed up in a
manner which resulted in essentially uniform stiffness proper-
ties in the circumferential direction (i.e., the stiffness coeffi-

cients are independent of 8).  The material properties for the
individual layers are given in Fig. 1. The laminate stacking
sequence for the I-section was [£450/90], and {£450/901,, for
the J-section. Each frame section was semicircular with a
diameter of 72 inches (1.8288 m.). Bonded to the outside
flange of each frame was a sixteen-ply [£450/90],,, quasi-
isotropic skin made of the same material. The frame sections
were constructed so that the skin would extend 0.5 inches
(0.0127 m.) beyond each side of the bottom flange of the
frame. Measured dimensions were used in one of the finite-
element madels and results were compared to nominal dimen-
sion results and the experimental data.

b, Iustrinentation_and test method. A photograph of
the test equipment and composite frame specimens is shown in
Fig. 4. The ends of the frine sections were potted in a fixture
which was bolted to a large steel heam backstop.

An air-shaker, connected to an air compressor, was used
to excite all 1est specimens.  Excitation was both in-plane
tradially). and out-of-plane. For in-plane excitation, the shaker
was positioned so that the pulses of air struck approximately
along a normal to the surface of the skin. For out-of-plane
excitation, a piece of styrofoam was attached to the side of the
frame by double-sided adhesive tape. Pulses of air struck the
flat Face of the styrofoam along a normal to the face. The
position of the air-shaker was adjusted if the excitation was
striking on a node.

A miniature accelerometer was attached at a fixed
locition to the (rume sections with double-sided adhesive tape.
Owput from the accelerometer was amplified and displayed
along the vertical axis of an oscitloscope. Natural modes were
determined by tuning the excitation frequency of the air-shaker
to produce an acceleration maximum on the vertical deflection
on the oscilloscope.  Output also passed through a low pass
filker and was displayed as vibrational frequency on a fre-
(quency counter. )

A handheld velocity probe was moved along the frame to
determine node locations and mode shapes. The output of the
probe was displayed along the horizontal axis of the oscillo-
scope.  The probe and accelerometer outputs comhined to
create a Lissajous pattern on the oscilloscope. A phase shift in
the Lissajous pattern occurred when the velocity probe passed
over a nixde.

Since manual equipment was used in mapping the nodal
locations during the vibration survey of the frames, only nodal
lines ussocinted with gross in-plane, and gross out-of-plane
motions were monitored. Other nodal lines. associated with
localized deformation patterns were not surveyed. These
localized deformations were noticeable in some of the higher
vibration modes, with complex deformation patterns and/or
strong coupling between in-plane and out-of-plane motions.

Finite-Element Grids

Two-dimensional models were generated for the actual
frames (test specimens) described in the preceding subsection,
as well as for the corresponding frames with nominal dimen-
stons. Henceforth, the frames with actual and nominal dimen-
sions will be referred to as the actual and nominal frames.
respectively.  For the actual frames. spline interpolations
through measured dimensions were used to generate the wall
thicknesses and coordinates of the nodal points. Isoparametric
finite elements were used 1o approximate the variations in
stiffnesses and geometry. The one-dimensional models consid-
ered herein are for the frames with nominal dimensions. The
grids used for both the one-dimensional and two-dimensional
models are described subsequently.

Two-dimensional models.  An 18x8 grid was used for
modeling the whole I-section frame. In this grid two elements
were used to model each of the web, top and bottom flange
sections. The part of the skin adjacent to the bottom flange
section was treated as part of the flange. One element was used
to model each of the two puarts of the skin section extending
beyond the bottom flange (see Fig. 1). The middle surfaces of
the top flange and the web were taken to be their reference
surfaces. The middle surface of the combined bottom flange
and skin was taken (o be the reference surface.

An 18x7 grid was used for modeling the whole J-section
frame. The distribution of the clements was similar to the
I-section frame. Only one element was used to model the top
flange section (see Fig. 1).

Totally clamped and panially clamped support condi-
tions were considered. For totally clamped supports, all the six
generalized displacements were restrained
(u"=u2'=w'=¢|:=¢2r— ,'=()). The partially clamped
conditions were obtained from the totally clamped case by
successively removing the restraints on one. as well as on

combinations, of the displacement and rotation components.

One-dimensional models. A uniform grid of 24 elements
wis used in modeling each of the I-section and J-section
frames. The principal sectorial properties of the cross section
were evaluated using the Fortran program listed in Coyette. ™

Identification of Modes and Estimation of the Error in the
One-Dimensional Model Predictions

The two-dimensional models can be used to: a) identify
the in-plane, out-of-plane and coupled maodes, and b) estimate
the error in the predictions of the one-dimensional models.
This is accomplished through decomposing the complementary



strain energy. UY, Egs. 9. associated with each vibration muode,
into three components, U,. U, and U, (see Table 1). The first
two components, Uy and U, are associated with the in-plane

and out-of-plane  stress resultants, respectively.  The third
component, U,, is associated witl the stress resultants which

are particular to two-dimensional plates and shells (not present
in one-dimensional beam models). The in-plane and out-of-
plane modes correspond to the modes for which U /U and
U./U" are close to 1, respectively. The strongly coupled modes
correspond 1o nearly equal valves of U/U® and U/U%. The
ratio U /AT s indicative of the error in the one-dimensional

model predictions.

It is also useful 10 partition the total complementary
strain energy. associated with each mode, into three com-
ponents, Uy, Uy, Upy representing the contributions of the top
tange. web, and bottom flange (including the skin).

Comparison of Experimental and Finite-Element Results

The resulis of the experimental and numerical studies are
sunmuized in Figs. S through 9 and Table 2 for the I-section
fraome. and in Figs. 10 through 14 and Table 3 for the 1-section
frime. For the finite element madel three cases are considered.
nmnely. totally clamped edges (with both translational and

roational restraims), partially clamped edges with ¢, not

restrained, and partially clamped edges (with u, - in the flanges

and @, - notrestrained),

The maxinum and minimum values of the frequencies
obtained by the two-dimensional finite element model
(comresponding to the totally clamped and partially clamped
cdges) are shown in Figs, 560 and 106G along with the ex-

perimental frequencies. (See also Tables 2 and 3). Note that.

the experimental frequencies associated with mode 9 of the
bsection, and of the J-section, respectively. are close in fre-
quency. Muodes for these frequencies have very close nowdal
focations,  Alse. the 12ih mode of the F-section (see Table 2)
wits missed in the experimental survey which is indicative of
the difficulty of determining the high frequency modes. The
fact that only one of the multiple experimental frequencies with
close nodal locations (mode 9) is predicted by the finite ele-
ment nuxdel may be attributed to imperfections in lamination
and material properties: and/or to geometric nonlinearities
which were not incorporated into the finite element model.  In
Figs. 5(h) and 1(¢b) bar chans are given for the frequencies
obtained by two-dimensional models of the actual and nominal
trames along with those of the one-dimensional model.

In Figs. 6 and {1 bar charts are given showing the two
decompositions of the complementary strain energies, associ-
ated with the different vibration modes, described in the
preceding subsection.  The ordinates in Figs. 6(a) and 11(a)
represent the ratios of U, /U, U, /U and U3 /US, and the
ordinates in Figs. 6(b) and Ti(h) represent the ratios
Uy AU U SUS, Uy /U for each of the modes.

The mode shapes associated with the first five ex-

perimental and analytical frequencies are shown in Figs. 7 and
12. Two views are shown for the deformations associated with
each mode: side view and top view. Also shown are the nodal
lines of the w” displacement on the top and bottom flanges. As
can be seen from Figs. 7 and 12, the deformation patterns
associated with higher modes are fairly complex. As men-
tioned previously, the only experimental nodal lines monitored
are those associated with gross in-plane, and gross out-of-plane
molions.  Generally, good agreement between the finite cle-
ment and experimental nodal lines is observed in these cases.
Other nodal lines, associated with localized deformations are
shown only for the finite element solutions.

The sensitivities of the vibration frequencies to the fiber
orientation angles of the top flange, web, and bottom flange
and skin are depicted in Figs. 8 and 13. The ordinates in Figs.
R and 13 represent the sensitivity derivatives with respect to the
indicated fiber angles. Each of the sensitivity derivatives is
normalized by dividing it by the corresponding frequency of
vibration. The sensitivities of the vibration frequencies to the
material parameters F, L E|. G, | and G, are shown in Figs. 9
and 14. The ordinates in Figs. 9 and 14 represent the sensitiv-
ity derivatives with respect to the indicated elastic moduli.
Each of the sensitivity derivatives is divided by the correspond-
ing frequency and multiplied by the corresponding  elastic
modulus. The effects of boundary conditions on the frequen-
cies obtained by the two-dimensional finite element models are
shown in Tables 2 and 3.

An examination of the experimental and finite element
results (Figs. 5 to 14 and Tables 2 and 3) reveals:

1. Reasomably good correlation is observed between.
numerical simulation and experiment for the I-section frame
(see Fig. 5(h)). The ratios of the first five experimental fre-
yuencies to the corresponding finite element ones ranged
between .92 and 1.02 (see Table 2). For the J-section frame
the correlation is not as good (Fig. 10(h)). The corresponding
ratios for the first five frequencies were 0.87 to 1.04 (see Table
3.

2. Most of the experimental frequencies for the I-section
frame and the J-section frame are between those for the totally
and partially clamped supports (with both ¢,- and u - in the

flanges not restrained). This is particularly true for the higher.
modes.  For some of the modes the experimental frequencies
are closer to the partially clamped support case (e.g.. modes 10,
1 and 12, see Fig. 5(b)). For the | and J-section frames the
finite element model predicted only one of the nultiple ex-.
perimental frequencies with close nodal lines (mode 9). The.
other experimental frequencies were between those for the
totally and partially clamped supports (with both ¢, and u, - in

the flanges not restrained. see Fig. 1((h)).

3. The lowest five frequencies obtained by the one-
dimensional model are reasonably close 1o those obtained by
the corresponding two-dimensional model. This is particularly
true for the J-beam where the errors in the predictions of the
one-dimensional model were well below 10% (see Figs. St
and HXu)).



4. ldentification of the modes as in-plane or out-of-plane
can best be accomplished hy examining the energy com-
ponents, Uy /UC and U, /U, associated with the in-pline and
out-of-plane forces. respectively (Figs. 6(a) and 1160y Also,
the error to be expected when using one-dimensional thin-
walled beams can be estimated by computing the ratio of the
energy associsled with the forces neglected in thin-walled
beams to the wtal energy. UV (see Figs. 66a) and 1)),

5. The coupling hetween in-plane and out-of-plane
deformations is more pronounced in the J-section than in the
I-section frame.  As an example. the first twenty modes for the
I-section frame had either U, /U or U, /U 2 0.75. On the
other hand, only modes | to 4, 6. 8 and 10 in the J-section
frame had U, /U* or U,/U* 2 0.75.
neither the ratio U, /U* nor U, /U¢ was close to | (see Figs.
o) and 116,

6. For the I-section frame, the contributions to the total
energy of the top and bottom flanges far exceeded that of the
web (or any given made. The ratio of the strain energy in the
web to the total strain energy was less than (.20 for the first ten
modes and less than (L.28 for the succeeding ten modes (see
Fig. 6(by. For the J-section frame the strain energy in the web
approached (0.4 of the total energy in some of the modes (see
Fig. 11(h)).

7. For the I-section frame, the strain energy of the top
flange is the dominant energy in the in-plane deformation
moles and the strain energy of the bottom Mange (including the
skin) dominates for the out-of-plane deformation modes (sce
Fig. 6uh)y).

& The vibrational response of both the I-section and
J-section frames is very sensitive to restraining the u, displace-
ments of the flanges (and skin). 1t is somewhat sensitive to the
rotational restraint on ¢, - (see Tables 2 and 3). However, it is

insensitive to restraining the displacement components u,- and

w’ and the rotation ¢, -.

9. The vibrational response of the I-section and J-section
is more sensitive to variations in the +45°, -45° fiber angles of
the top Mange than to variations in the 0° or 90° fiber angles.
The variations in the 0° and 90° fibers of the web and the
bottom flange have a noticeable effect on some of the modes.
but their effect is generally less than that of the 457, -45° (ibers
(sce Figs. 8 and 13, The vibrational response is also more
sensitive to variations in the elastic moduli £, and G, | than 10
any of the other material coefticients (see Figs. 9 and 14).

1. The sensitivity of the vibration frequencies with
respect lo variations in both F, and G, is almost the same for
all the modes (see Figs. 9 and 14). This may be auributed to
the quasi-isotropic lamination vsed for both the flanges and the
web. It suggesis the feasibility of replacing the quasi-isotropic
composite, in the one-dimensional thin-walled beam model, by
an equivalent isotropic material, as was done in the present
study.

For the higher modes

Comments on Sources of Errors

Sources of Errors

The determination of natural frequencies and modes
from vibration tests and numerical models involves numerous
possible sources of discrepancies or errors which are related 1o
mechanical and equipment limitations as well as to theoretical
and physical assumptions. The errors in vibration tests include
inexact equipment calibration, excessive noise, manufacturing
variations, incorrect transducer locations and operation in a
region of nonlinearity of the response. Numerical modeling
errors can be attributed to inaccuracies in estimated material
properties and insufficient modeling detail.  In the present
study care was exercised in collecting and recording the
vibration test data, and in the selection of the numerical model.
However, nominal material properties and layups (fiber orien-
tation of the different layers) were used in the numerical modet.
The sensitivity analysis helped in identifying the material and
lamination parameters that need to be accurately determined.

Concluding Remarks

A detailed study was made of the effects of variations in
lamination and material parameters on their vibrational charac-
teristics of thin-walled composite frames. The structures
considered are semicircular, thin-walled frames with 1 and )
cross sections. The flanges. web and skin of the stiffeners have
quasi-isotropic laminations with fiber orientation being combi-
nations of £ 45" 07 and 90" fayers. Two computational modeds
are used for precicting the vibrational characteristics.  In the
first model, the flanges and webs of the stiffeners were
maodeled by using two-dimensional shell (and plate) finite
elements. The second model was a finite element discretization
of the one-dimensional Vlasov's-type thin-walled beam theory.
A mixed formulition was used with the fundamental unknowns
consisting of both the generalized displacements and siress
resultants (or internal forces) in the frame. The frequencies and
mudes predicted by the computational models are compared
with those obtained from experiments. A detailed study was
made of the sensitivity of the vibrational response 1o variations
in the fiber orientation, material properties of the individual
layers. and boundary conditions. On the hasis of this study the
following conclusions are justified:

I. For some of the higher vibration muodes the ex-
perimental frequencies for thin-walled frames are generally
between those for the totally and partially clamped supports.

2. Identification of the modes as in-plane or out-of -plane
“an best be accomplished by examining the energy components
associated with the in-plane and out-of-plane forces. Also, the
minimum error 1o be expected when using one-dimensional
thin-walled beams can be estimated by computing the ratio of
the energy associated with the forces neglected in thin-walled
beams to the total energy. '

1 For quasi-isotropic composite frames the vibration
frequencies, associated with the lower modes, can be accurately
predicted by isotropic one-dimensional beam model (with
effective elastic moduli). The accuracy of predictions is



dependent on the cross-sectional distortions during the beam
deformations.  As the cross-sectional distortions increase, the
degradation of accuracy becomes more pronounced.

4. 'The vibrational response of thin-walled semicircular
frames is very sensilive to restraining the displacememt compo-
nent of the flanges along the fength of the frame. It is some-
what sensitive to the restraint on the associated rotational
component.  However, it is less sensitive to restraining the
other displacement and rotation components.

5. The vibrational response of thin-walled composite
frames with quasi-isotropic laminations is more sensitive 10
variations in the +45°. -45" fiber angles of the top Mange than 1o
variations in the 0" or 90° fiber angles. Variations in the 0" and
N fibers of the web and the bottom flange have a noticeable
ctfect on some of the modes, but their effect is generally less
than that of the 45", -45" fibers. The vibrational response is
also more sensitive to variations in the material coefficients E,

and G, than to all other coefficients.

6. The sensitivity of the vibration frequencies with
respect to variations in both E, and G, , is almost the same for
all the modes.  This may be mtributed to the quasi-isotropic
tamination used for both the flanges and the weh. It suggesls
the feasibility of replacing the quasi-isotropic composite by an
equivalent isotropic material in the one-dimensional thin-
walled beam analysis. as was done in the present study.
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APPENDIX A - Symbols

extensional stiffness of the laminate
(Manges or web) in the x-direction
in-plane shear stiffness of the laminate
multipliers (see Eqs. § and 7)

effective Young’s and shear moduli of the
eyuivalent isotropic material, respectively
elastic moduli of the individual layers of
the laminate (Mlanges or web) in the
direction of fibers and normal to it
respectively

matrix of linear flexibility coefficients for
an individual element

shear moculi in the plane of fibers and
normal to it, respectively

vector of stress resultant (or internal
force) parameters

total thickness of the taminate

generalized stiffness matrix for an indi-
vidual element (see Eqs. 3)

bending and twisting moments in the
one-dimensional beam maodel

bending stress resultamts in  the two-
dimensional model

consistent and generalized mass matrices
for an individual element (see Fys. 1)
extensional stress resultants in the (wo-
dimensional model

axial force in the one-dimensional beam
maodel
transverse
dimensional beam muxdel

transverse shear stress resultants in the

shear forces in the one-

two-dimensional model

radius of curvature of the centerline of the
frame (used in one-dimensional beam
modely

outer radius of curvature of the frame (see
Fig. 1)

total complementary strain energy of the
frame

contributions of the top flange, web and
bottom flange (including the skin) to the
total complementary strain energy
complementary strain energy components
associated with in-plane and out-of-plane
forces, respectively

complementary strilin energy component
associated with the forces neglected in the
one-dimensional beam model
displacement components in coordinate
directions for the one-dimensional beam
mxlel

. u.w

ll", “2" w

{X}
Xy, X2, Xy

(Z)
*
{7}

0

A
p
it

9.9,

¢|’-¢2“¢_1’

)

0

Subscripts:
n

2D

S
Superscripts:
t

displacement components of the wo-
dimensional model in the x;.x;, xy
coordinate directions

displacement components of the two-

dimensional model in the x,-,x,-.x,-

coordinate directions

vector of nodal displacements

local orthogonal coordinate system used
in conjunction with the two-dimensional
madel (for each of the web and the two
flanges)

vector of element degrees of freedom

particular solution (see Eys. 5 and 6)

fiber orientation of individual layers
lamination and material parameters

mass density of material

major Poisson’s ratio of the individual
layers
rotation
dimensional model referred to the local
coordinate system x; . x;

components  of  the  two-

components  of  the two-

rotation

dimensional model referred to the global
coordinate system x, -, X, X,

frequency of vibration
= dfdx

one-dimensional finite element model
two-dimensional finite element model

shear center

matrix transposition

Table 1.- Decomposition of total complementary energy, US
into components.

Associated stress resultant

Energy (see Fig. 2) Comments
Components
Web Flanges and Skin

Ui Ny, N2 Ni, M, Qq in plane response
quantities

Uz M 1 M 12 Ql le, M4 out-of-plane re-
sponse quantities

Ug N3, M3, Q, response quantities

neglected in one-
dimensional model

UC=U]+U2+U3
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Figure 1.- Thin-walled composite frames and coordinate systems used in present study.
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Generalized Displacements U
Referred to Global Coordinates Ny,

U,
N2
M1
7 M,
®,
M2
2]
M21

Web

Figure 2.- Sign convention for generalized displacements and stress resultants in two-dimensional model.

Figure 3.- Sign convention for generalized displacements and stress resultants for one-dimensional model.
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